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A Propagator Expansion Method For Solving
Linearized Plasma Kinetic Equations
With Collisions

1. INTRODUCTION

e e o

In 1946, Landaul gave a method for solving linearized plasma kinetic
problems where discrete particle interactions were neglected. Subsequent
studie32 -4 of collisional plasmas have employed methods of solution tailored
to a specific form for the collision operator. In this paper, we give a general
expansion method for solving linearized plasma kinetic problems when colli-
sions are included. The method can be applied to a wide class of collision
operators and has, for example, produced closed-form results for the colli-
sional dielectric function for the Flalescu5 -Lenard6 collision operator.

The essence of the idea presented in this paper is the derivation of a
collisional propagator in terms of the collisionless propagator for the Vlasov
equation and the linearized collision operator, and the representation and use

TIeT——
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of the collisional propagator either as a series solution in powers of the collision
frequency v or as an asymptotic expansion as the collision frequency tends to

zZero.

2. KINETIC EQUATIONS

The kinetic equations in the electrostatic approximation for a collisional
plasma are:

la , .2 e pagee DRI R

‘; aF +[me E(r.t) +a0(v)]- o { flr,v,t) = of(f) R (1)
Z E(r t) = [niqi + qe fdsv f(f",\?,t)] . (2)
r

where E is the self-consistent, electrostatic field; 5'0 is the force-per-unit mass
due to spatially uniform, stationary fields; aad £ (f) is the nonlinear collision
operator that acts on the velocity-space coordinates of the electron distribution
function f. The ions are assumed to provide a fixed neutralizing background with
charge density njq; while the other quantities have their usual meanings. We
seek a perturbation solution of the form

f(5,V, t) = fo¥) + £1(r, V. 1) , (3)
E(r, t) = El(r t . : (4)

where fg is the zero-order solution and f] and }_fl are perturbed quantities. The
first-order equations using abbreviated notation are:

9 -~ 9 L 9 Vel - Q¥ 5
SV ot e 7oL =8V 5
2 9y 3, ¥

— == ¢¥{t) = - 4amqe [dOV £V (1) , (6)
or

v qe v

s¥() = ot - , )

m ar 3\7

where the subscript 1 on the perturbed quantities has been deleted and the super-
script v is used to denote collisional dependence, ¢*(t) is the electrostatic poten-
tial, and LV denotes the linearized collision operator. The operator equation for
the collisional propagator operator Ul'(t-t'), is

_\. NN A9 , e e e N T e NN T

\
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a_ . 9 > .9 _ v V(- =
i (at+v =i &) -0, (8)
I-: where UY(t-t') is given by
' VY (t-t") =fd3r'fd3v' GY(r-r',v,v', t-t") , (9)

]

and where GV(r-r',

V,V', t-t'), the Green's function for the problem, is transla-
tionally invariant in space and time. Here, UY(r) is subject to the causality con-
dition that UY(r)=0 fort <0 and the initial condition that UY(0)=1. In terms of
UY(t-t") the solution for f(t) is

| T VRTINS

t
V(1) = UY(t) £Y(0) +f dt' u¥(t-t") s¥(t" (10
0
where fV(0) denotes the initial value of f(t). It is convenient to transform Egs.

. (6) through (10) to K-v-w space using
|
; W= T, PET0) = T TP (1
= W) =17, YETY =T, 1), (12)
T o /-(2")3 f exp(ik- -~ iwt) , (13)

0

| Te” /;‘3r / dt exp(~ik- r + iwt) , ()
’ 0

.:: where X is real, Im w= b>0, and the contour C runs from - wo+ib to + x+ib.
S Here b is chosen sufficiently large enough to ensure that the t-integration con-
y verges.” The equations in K-¥-w space are:
N ~ 9% ~
. Pl = B [P0 + 52 - W K- a— fo] - (15)
)
'::} 7. Titchmarsh, E. C. (1948) Introduction to the Theory of Fourier Integrals,
:.::‘g Oxford University Press, London, Chapter 1.
! 9
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. P = e (o] &80 o (16)
= vUT (W) 175 s
| K Llev(o )]
;.': 41r 3
fw=1-i fd TVwk: — > f0 amn
: m k
. where fvi’(o) is the spatial transform of £fV(0). The operator T (W) is
) TV(w) =ﬁ3v' GY(k, v,V W , (18)
— and the Green's function in K-v-u space is
o
GV, v, Vo) = Tg , G'(R,v.v'7) . (19)

3. EQUATION FOR THE COLLISIONAL PROPAGATOR

In order to derive an equation for U”(w), we consider a collisionless propa-
gator operator, U(t-t'), which obeys the operator equation

+ v +ag - )U(t-t') =0 (20

&1

——
] g
Y] IQ’

"

and is subject to the same causality and initial conditions as those imposed on
. UY(r). We return to Eq. (8) and write an operator equation for UY(t-t") in terms
= of U(t-t') and LV:

U (t-t") = Ult-t" + f‘ dtrue-tt) LY UVttt 1)
t'

where we have used causality and the initial conditions. Transforming Eq. (21)

~ .
to k-v-w space, we obtain

. ~y ~ ~ 21

o UY(w) = T + T LY T'(w) . (22)

. Solving Eq. (22) formally, we obtain

:' ™~y ~ g ‘l ~

i: U =[1-UwL" ] U . (23)

'; Equations (15) through (17) and Eq. (23) give a formal solution to the collisional, 1

:;. initial-value problem. ]
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4. ASYMPTOTIC EXPANSIONS AS v - 0

o a—

" In order to pursue a solution by the expansion method, we introduce a
collision frequency v and write LY = yL. In most cases, v will be small com-
pared to other frequencies of interest. For a wide class of collision operators
I including integral, differential, and integral-differential, and for some con-

tinuity and integrability conditions on the functions that appear in the problem,

it can be shown that the iteration of Eq. (22) yields an asymptotic expansion for
UV (w) as v-0:

: TV () ~ Ttw) + v Ol L Tl + . ..

+ vy T LI" T +... . (24)

By this we mean that if g(w) = E(l_c.,\-; w) and 7(w) = UY(w) F(w), then the action of

the iterated UY(w), given by Eq. (24), on F(w) generates an asymptotic expansion

for T'(w) as »~0. Similar results can be obtained for the iterated ¢” (w). If the
L iterated ¥ (w) is a divergent asymptotic expansion, then Eq. (24) may not be
truncated and used to approximate the initial-value problem as t— « because
time secularities will appear in the solution when transformed to F-vV-t space.
However, even if the iterated eV (w) is also divergent but u/wp <<1, where w, is
the plasma frequency, then &Y (w) may be truncated at first order in v and set
equal to zero to obtain an approximate solution for the roots of the dispersion
relation. This provides a solution for the normal mode and stability problems
accurate to order v/ Wy The expression for the collisional dielectric function
truncated to the first order in v, denoted by s(l)(f(., w), is

& :

)

& o .

. e
s 2 s e ’s
PRIV N

B I

e =1 -1 ;*2’- {Tolk, ) + v Ty(K, )} , (25)
Tk, 0 = fd%[ﬁ(m L1” Blw) k - %v:fom . (26)

where fO has been normalized to one.
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5. UNIFORMLY CONVERGENT EXPANSIONS IN POWERS OF v

For the special case when ﬁ(w) is the free-particle, collisionless propagator
and L is an integral operator, Eq. (22) is an integral equation for ﬁ”(w). In our
study of problems of this type, we have found that if the functions that appear in
the problem are continuous, integrable, and obey some reasonable uniform
bounds, then the iteration procedure yields the Neumann series for the associated
integral equation and

o0
T = Tt + Y v?(TL)” Tw (27

n=1

is the power-series solution for TV (w), uniformly convergent in the neighborhood
of v=0. In this case the iterated ¢¥(w) is:

2
- wp -

Yik,w)=1-i—5 np ok, w 2
E(w)llkZZvn(w) (28)

n=0

i i

T (K w) =fd3v —\L —

w=k'v w=-k'v

x k2 0@ (29)

where f, has been normalized to one and the expression for the free-particle,

collisionless propagator has been used:
o~ _ 3 ' i — .
T = j:a v s @-vy . (30)
w=-k-v

For problems of this type, it also follows that Eq. (28) is the power-series
solution for e!(w), uniformly convergent in the neighborhood of v=0. If Eq. (27)
can be summed in closed form and analytically continued for Im w<b, then the
initial-value problem is solved.

12
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6. SYMMETRY PROPERTIES

It can be shown that 5"([2\;:\7',w P = 6”(-1:;,\7', -w*)with similar formulae
for the other k-v-w quantities discussed in Sections 2 and 3, and that the roots of
the collisional dispersion relation, e”(w)=0, obey the relation w!(K) = -w!(-K)*.
The same symmetry properties hold for each of the iterated K-v-w quantities
discussed in Sections 4 and 5 when truncated to the Nth order in .

7. SOME APPLICATIONS

For the free-particle, collisionless propagator, three types of linearized
collision operators have been studied: integral, differential, and integral-differ-
ential.

As an example of the integral-type collision operator, we studied the simple
BGK*? collision operator, given by

LY=vi[1+ fo(\_")fdav'] , (31)

where f3 has been normalized to one. We found that the iterated U (w) and the
iterated e'(w) are uniformly convergent power-series solutions in 1 that agree
_with expansions of the exact results.

The linear simple Fokker-Planck collision operator is a differential operator

and has been studied by Lenard and Bernstein. 3 1tis

[ . , 3 . 2
. L'=1"‘i'(v+v
av T

3|

) . (32)

where v is the electron thermal speed. We found that the iterated U¥(w) is a
divergent, asymptotic expansion as 1 -0 in the sense described above, yet the
iterated e’ (w) for fy Maxwellian is a uniformly convergent power-series solution
in v and agrees with the expansion of the closed-form result for e"(v). For
example, the solution to the dispersion relation in the long wavelength limit to
order ¢ yields the total damping rate Fvl—{', which is the sum of the Landau

L

(collisionless) part v 1’(’ and the collisional part 'y'/l'(’, where

1

Yl /24 2k/kD? 4] @

Here kp is the Debye wavenumber. Note that these results are obtained without

.
ot

B e e e
A .
. .

solving a differential equation involving L!.
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The linearized Balescu5 - Lenard® collision operator is an integral-differ-
ential operator. We have found that the iterated U¥w is a divergent, asymptotic
expansion as v -0 and we have obtained closed-form results for the iterated
£V (w) to the first order in . Using tliese results, we have found the solution for
the collisional dispersion relation in the long wavelength limit for the linearized
Balescu - Lenard collision operator and for f Maxwellian. We obwain the total
damping rate FVR' which is the sum of the Landau (collisionless) part YL-* and

k
the collisional part 71’;, where

2

71"{(—:- (k) [1+——( D)+...]
- 5 vei[l-Z(—::—D)z + ] , (34)
Vee = %‘r 1/2 no‘—q:-— nA . {35)
SUNE
1/2

Here 1gf =2  “tee» k= Il_;l s kp is the Debye wave number, ng is the unperturbed
density, T, is the unperturbed temperature, and fnA is the Coulomb logarithm.
Equation (34) is new and was obtained in collaboration with B. Basu. A detailed
discussion of its derivation is quite lengthy and will be published elsewhere.

8. DISCUSSION

Equations (21) through (23) are the main results of this paper. They give
equations for the collisional propagator in terms of the collisionless propagator
and the linearized collision operator. An iterative solution of Eq. (22) or (23),
given by Eq. (24), which is what we call the expansion method of solution, when
substituted into Eqgs. (15) through (17) provides a solution of the linearized plasma
kinetic equations for a given collision operator. This method of solution as
applied to the collisional plasma problem discussed here is new and is particularly
useful when a direct solution of the problem cannot be found. For example, the
problem of finding the direct solution of the linearized plasma kinetic equations
with the Balescu-Lenard collision term and then using it to find the collisional
damping of the electrostatic plasma waves appears to be intractable. But by
applying the expansion method, we have been able to obtain the collisional damping rate
for fo Maxwellian to the first order in the plasma parameter, which is given by
Eqgs. (34) and (35).
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